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H I G H L I G H T S

� Vibrations of curved DWCNTs with
geometric & vdW force nonlineari-
ties using DQM are studied.

� Different boundary conditions (BCs)
are formulated and studied
using DQM.

� Nonlinear mode shape of the CNT
cannot be represented by a single
linear eigenfunction.

� For symmetric BCs, only the odd
modes of the linear system are pre-
sent in the solution.

� For asymmetrical BCs, both odd and
even modes of the linear system are
present.
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a b s t r a c t

Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an
elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon
nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and
outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential
equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of
motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the
surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is
studied. Results show that it is possible to detect different vibration modes occurring at a single vibration
frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that
boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including
multiple solutions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

After the discovery of carbon nanotubes (CNTs) by Iigima [1],
considerable attention has been devoted to carbon nanotubes
(CNTs), since they have the ability to revolutionize critical tech-
nologies owing to their remarkable physical, mechanical, and

electrical properties [2]. These extraordinary properties made
CNTs as perfect materials for a wide range of applications [3–5].
CNTs can be efficiently utilized as nano-pipes used in fluid trans-
port and drug delivery systems [6–8]. Also, CNTs have potential
applications in nano-actuators, nano-motors, and nano-sensors
[9–12].

Recent theoretical and experimental studies show that the
deformation of CNTs is nonlinear in nature. Fu et al. [13] investi-
gated the nonlinear free vibration of embedded single and multi-
ple walled CNTs. By using the incremental harmonic balanced
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method, they observed that as vibration amplitude increases, the
nonlinear natural frequency increases for uniform simply sup-
ported single and double walled CNTs. Later studies show that in
the case of multiple walled carbon nanotubes (MWCNTs), natural
frequencies of CNTs are affected by another source of nonlinearity,
interlayer molecular forces. The interlayer force between layers of
CNTs is governed by van der Waals (vdW) force. The vdW force
estimated by Lennard-Jones potential is inherently nonlinear [14–
16]; therefore, in order to accurately predict the vibrational
behavior of MWCNTs, the nonlinear effect of vdW force should
be considered [17,18]. The effect of vdW force on nonlinear natural
frequencies of DWCNTs is investigated by Cigeroglu and Saman-
dari [19] using describing function method and utilizing multiple
trail functions in Galerkin method. It is observed that utilization of
multiple trial functions resulted in the determination of multiple
nonlinear natural frequencies at the same vibration amplitude and
identification of single nonlinear natural frequencies associated
with different vibration amplitudes. Even though Galerkin method
is easy to implement, it requires trial functions or comparison
functions that satisfy all the (geometric and natural) boundary
conditions of the system. Hence, Galerkin approach is used only
for studying hinged–hinged beams where the trial functions are
simple sine functions. Therefore, presenting a general formulation
capable of predicting the vibrational behavior of CNTs under
different boundary conditions is of high importance. Recently,
finite element method (FEM) is proposed to study the free
vibration of CNTs where solution method such as Galerkin method
is not applicable. Applicability of FEM in studying the free vibra-
tion of CNTs is investigated by Ansari et al. [20] in the presence of
only geometric nonlinearity. Using FEM, authors were able to
study the effect of boundary conditions on nonlinear natural
frequencies for the first time. Even though classic FEMs can predict
vibrational behavior of CNTs, they are disadvantaged in terms of
computational time since they require higher number of grid
points which results in large number of nonlinear equations. In
order to overcome this difficulty differential quadrature method is
utilized in this study.

The differential quadrature method (DQM) is a well-developed
numerical method for quick solutions of linear and nonlinear
partial differential equations. DQM developed by Bellman and
Casti [21] is a discrete approach to directly solve the governing
equations of various engineering problems. Different from con-
ventional methods such as finite difference (FD) and finite element
(FE) methods, DQM requires less grid points to obtain an accep-
table accuracy. A comprehensive review on the DQM can be found
in [22]. Owning to its efficiency and accuracy, DQM has the
potential to be used in variety of application areas. Applicability
of DQM for micro and nanoscale beams and tubes is studied by
Civalek et al. [23] and Wang et al. [24] for linear systems. Later,
considering the nonlocal effect and temperature effects, same
problem has been solved by Zhen and Fang [25]. Based on
Eringen's nonlocal elasticity theory and von Kármán geometric
nonlinearity, the nonlinear free vibration of a DWCNT is studied by
Ke et al. [26] where a direct iterative method is used to solve the
resulting system of equations. They studied the effect of system
parameters on variation of nonlinear natural frequency of a
DWCNT vibrating in the first in-phase vibration mode where
different types of boundary conditions are considered. Later,
benefiting from the advantages of DQM, Janghorban and Zare
[27] studied the linear free vibration of functionally graded carbon
nanotubes with variable thickness, where material properties
are assumed to be graded in the longitudinal direction and a
similar problem using different beam theories is studied by Ansari
et al. [28].

The number of nonlinear studies on vibrations of CNTs having
different end conditions is rare in literature due to the limitation of

Galerkin method explained formerly. In addition to this, it is
observed that only geometric nonlinearity is studied in these
studies and nonlinear van der Waals effects between the layers
of CNTs are neglected, since existence of vdW force complicates
the solution. Therefore, to the best of author's knowledge, this is
the first study, which considers nonlinear free vibrations of curved
double walled carbon nanotubes (DWCNTs) with different types of
boundary conditions, where in addition to geometric nonlinearity,
nonlinear interlayer van der Waals (vdW) force is also included.
Differential quadrature method is used to discretize the partial
differential equations of motion resulting in a system of nonlinear
ordinary differential equations. The main advantage of DQM, in
comparison to solution methods like variational approach [29], or
Galerkin method [18,30], is its inherent simplicity in formulation,
where different end conditions can be easily adopted. Using DQM
and considering a harmonic solution in time, nonlinear differential
equations of motion are converted into a set of nonlinear algebraic
equations, which is solved by the developed iterative path follow-
ing method (IPFM).

2. Modeling

Consider a DWCNT of length L, cross-sectional areas Ai;Ao, area
moment of inertias Ii; Io, Young's modules Ei; Eo, and densities ρi;ρo
embedded in an elastic medium having a stiffness per unit length
of k as shown in Fig. 1, where i and o indicate the inner and outer
tubes, respectively. Assume that the transverse displacements
of nanotubes are wiðx; tÞ;woðx; tÞ where x and t are the spatial
coordinate and the temporal variable. Equations of motion for free
vibration of embedded curved DWCNTs considering geometric,
initial curvature, and vdW force nonlinearities are given as [31–33]
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ZðxÞ is the initial curvature (waviness) of the cylindrical tubes.
pmðx; tÞ is the contact force between the surrounding medium and
the tube which can be identified by Winkler-like model [34,35]
and pvðx; tÞ is the nonlinear vdW force. According to the Winkler-
like model theory, the interaction between surfaces can be
simulated as a linear spring resulting in a pressure distribution
linearly proportional to the relative displacement between the
surfaces as

pmðx; tÞ ¼ �kwoðx; tÞ: ð3Þ

Fig. 1. Model of an embedded curved DWCNT.
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The negative sign in the above equation indicates that the
pressure is opposite to the deflection of the tube and k is defined
by the material constants of the surrounding elastic medium. On
the other hand, vdW force is composed of attractive forces
between atoms, molecules, and surfaces which only come into
action when the relative displacements are comparable with the
atom sizes [36,37]. The vdW force per unit area for two originally-
concentric tubes is given in [38,39] as

pvðx; tÞ ¼ p1ðwo�wiÞþp2ðwo�wiÞ3; ð4Þ

where p1 ¼ 2rið∂2U=∂δ2Þ
���
δ ¼ δ0

, p2 ¼ 2rið1=6Þð∂4U=∂δ4Þ
���
δ ¼ δ0

, ri is

innertube radius, and U is potential energy expressed in terms of
the interlayer spacing ri as follows [18,19]:

UðδÞ ¼ KIL
δ0
δ

� �4

�0:4
δ0
δ

� �10
" #

; ð5Þ

where KIL ¼ 0:4089101874 J=m2, and δ0 ¼ 0:34 nm is the equili-
brium interfacial spacing. Substituting Eqs. (3) and (4) into Eqs.
(1) and (2), the following nonlinear partial differential equations
for the DWCNT are obtained:
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It is assumed that the waviness of the tubes, ZðxÞ, follow the
first eigenfunction of the linear system, i.e., ZðxÞ ¼ eUϕ1ðxÞ, where
ϕ1ðxÞ is the first eigenfunction of the linear CNT. For instance,
ZðxÞ ¼ eU sin ðπx=LÞ [40] for the case of simply supported tubes,
where e is the amplitude of the initial waviness.

3. Generalized differential quadrature method

Generalized differential quadrature method (GDQM) approx-
imates the derivatives of a function with respect to a spatial
variable at a given discrete point by a weighted linear summation
of function values at all the discrete points in the computational
domain. For example, the nth derivative of a function WrðxÞ at the
mth point, xm, can be estimated by

W ðnÞ
r ðxmÞ ¼ ∑

N

s ¼ 1
cðnÞm;sWrðxsÞ; m¼ 1;2; :::;N; ð8Þ

whereW ðnÞ
r ðxmÞ is the nth order derivative of WrðxÞ at point xm, and

N is the number of grid points utilized in the discretization of the
partial derivatives. In Eq. (8) r refers to innertube or outertube, and
cðnÞm;sðs¼ 1; :::;NÞ are the weighting coefficients for the nth derivative
estimation of the mth point, which can be pre-determined [41].
Defining sWr ¼WrðxsÞ, Eq. (8) can be shorten as follows:

mW
ðnÞ
r ¼ ∑

N

s ¼ 1
cðnÞm;ssWr ; j¼ 1;2; :::;N: ð9Þ

In the generalized differential quadrature method, the global
Lagrange interpolation polynomial is used to calculate the weight-
ing coefficients. Detailed information on how to obtain the
weighting coefficients can be found in [42]. It is worth noting that
higher order of weighting coefficients can be calculated by using

matrix multiplication as follows:

CðnÞ ¼ Cðn�1ÞCð1Þ ð10Þ
where Cð1Þ is the matrix of weighting coefficients for the first
derivative. Since the positions of the sampling points play a
significant role in the accuracy of DQM [43], Gauss–Lobatto
quadrature points, which result in minimum error, are used.

4. Application of DQM

A separable solution of wrðx; tÞ ¼WrðxÞUTðtÞ is used in the
partial differential equations of motions defined by Eqs. (6) and
(7). Furthermore, assuming a single harmonic solution in time for
the temporal part, i.e. utilizing harmonic balance method (HBM)
with a single harmonic, and applying the GDQM, the following
nonlinear algebraic equations of motion at the mth grid point are
obtained
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where dn is the weighting function which is calculated using
Gauss–Lobatto integration rule. According to quadrature integra-
tion rule, integration value can be stated as a weighted sum of
function values at specified points within the domain of integra-
tion as follows:Z b

a
f ðxÞdxCb�a

2
d1 U f ðaÞþdn U f ðbÞþ ∑
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where PnðzÞ is the nth order Legendre polynomial. The evaluation
points are the roots of a polynomial belonging to a class of ortho-
gonal polynomials which, in our case, is Gauss–Lobatto points. It is
worth noting that the Gauss–Lobatto rule is accurate for poly-
nomials up to the degree of 2n�3, where n is the number of
integration points [44]. Eqs. (11) and (12) can be written in matrix
form for all the points as follows:

ðKLþKNLÞUx�ω2MUx¼ 0; ð15Þ

KNL ¼KNLgþKNLv ; ð16Þ
where x denotes the unknown dynamic displacement vector
defined as

x¼ 1Wi2Wi⋯NWi 1Wo 2Wo⋯NWo g T ;
n

ð17Þ

E. Cigeroglu, H. Samandari / Physica E 64 (2014) 95–105 97



and M, KL , KNLg, and KNLv represent mass matrix, linear stiffness
matrix, and nonlinear stiffness matrices associated with geometric
and vdW force nonlinearities of the system, respectively. These
matrices are defined as

M2N�2N ¼ identity ð18Þ

KL ¼
EiIi
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3
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I is identity matrix, CðnÞ indicates weighting function matrix for the
nth order derivative using DQM, E stands for initial waviness
matrix, βr(r¼ i; o) is a displacement dependent coefficient repre-
senting geometric nonlinearity, and K1 and K2 are displacement
dependent matrices which are given in Appendix A.

In the present study, three common sets of boundary condi-
tions namely as hinged–hinged (H–H), clamped–hinged (C–H),
and clamped–clamped (C–C) are investigated. Boundary condi-
tions for hinged and clamped ends are

wrðxs; tÞ ¼ 0;
d2wr

dx2

�����
x ¼ xs

¼ 0; ð22Þ

wrðxs; tÞ ¼ 0;
dwr

dx2

����
x ¼ xs

¼ 0; ð23Þ

respectively. Where s¼ 1 and s¼N represents the end points.
Using the GDQM, the discretized counterparts of different bound-
ary conditions given by Eqs. (22) and (23) can be written in matrix
form as follows:

1 0 ⋯ 0 0
cðnLÞ
1;1 cðnLÞ

1;2 ⋯ cðnLÞ1;N�1 cðnLÞ
1;N

cðnRÞN;1 cðnRÞ
N;2 ⋯ cðnRÞN;N�1 cðnRÞN;N

0 0 ⋯ 0 1

½0�

½0�
1 0 ⋯ 0 0

cðnLÞ
1;1 cðnLÞ

1;2 ⋯ cðnLÞ
1;N�1 cðnLÞ

1;N

cðnRÞ
N;1 cðnRÞ

N;2 ⋯ cðnRÞ
N;N�1 cðnRÞ

N;N

0 0 ⋯ 0 1

2
6666666666664

3
7777777777775
8�2N

1Wi2Wi⋮N�1WiNWi1Wo 2Wo⋮N�1WoNWo g2N�1 ¼ f0g:	 ð24Þ

Superscripts nL and nR are assigned by the type of the left and the
right end conditions, where they are equal to 1 for the clamped
end and 2 for the hinged end. By using matrix manipulation Eq.
(24) can be written as

KB UxsþKS Uxn ¼ 0; ð25Þ
where

xs ¼ 1Wi ; 2Wi ; N�1Wi; NW 1Wo ; 2Wo ; N�1Wo; NWo gT ;
n

ð26Þ

xn ¼ 3Wi4Wi⋯N�2Wi 3Wo 4Wo⋯N�2Wo g T :
n

ð27Þ

representing boundary and interior nodes and KB and KS are 8� 8
and 8� ð2N�8Þ matrices related with boundary and interior
nodes, respectively. Following a similar approach Eq. (15) can be
written as

KD UxsþðKn

LþKn

NLÞUxn�ω2Mn Uxn ¼ 0 ð28Þ

Here Kn

L , K
n

NL , and Mn are ð2N�8Þ � ð2N�8Þ matrices, representing
the linear stiffness matrix, nonlinear stiffness matrix, and mass
matrix for the interior nodes, respectively. It is worth noting that
Kn

L , Kn

NL , and Mnare coefficient matrices for the non-boundary
nodes, where Kn

NL is a displacement dependent matrix whose
values depend on the values of the boundary nodes in addition to
the interior nodes. KD is an ð2N�8Þ � 8 matrix, which contains
coefficient of boundary nodes.

Solving xs from Eq. (25) and substituting it in Eq. (28), equation
of motion of the system is obtained as follows:

½ðKn

LþKn

NLÞ�KDK
�1
B KS�Uxn ¼ω2Mn Uxn ð29Þ

5. Solution method

The set of nonlinear algebraic equations given by Eq. (29) can
be solved numerically by using Newton's method with Arc-length
continuation. Newton's method converges to the correct solution
quadratically, if the initial guess is sufficiently close to the actual
solution. However, convergence problems arise when a solution is
around a turning point since the Jacobian matrix becomes singular.
Moreover, in order to follow the solution branch even it reverses
its direction; continuation parameter has to be replaced with
another parameter for which it is possible to follow the path
(arc-length continuation). Details of Newton's method with arc-
length continuation can be found in [19].

Another solution approach commonly used by a number of
researchers is a direct iterative process (DIP) by using eigenvalue
solvers. In this method [26,45], vibration amplitude increases incre-
mentally. At each step, nonlinear vibration dependent stiffness
matrices are calculated based on the mode shape of the previous
solution. The resultant linear system can be solved using an eigenvalue
solver. This process is repeated until the difference between the
assumed and calculated eigenmodes decreases to a predetermined
tolerance. It should be noted that DIP method is established based on
the assumption that variation of mode shapes along the solution path
is small. However, due to strong nonlinearities existing in the problem,
nonlinear system mode shape changes significantly along the solution
path as shown in [19], where DIP fails in finding the correct solution
and therefore it cannot be used directly. Moreover, the effect of each
nonlinearity is different whether the in-phase vibration mode or out-
of-phase vibration mode is considered. For example, due to vdW force
nonlinearity out-of-phase natural frequencies increase significantly
as the maximum vibration amplitude increases; whereas, in-phase
natural frequencies change slightly with respect to the maximum
vibration amplitude. As a result of this, it is possible for the path of
system natural frequencies to cross each other as presented in [19]. For
instance, system can vibrate in the second mode (out-of-phase mode)
with a nonlinear natural frequency higher than the nonlinear natural
frequency of the third mode (in-phase mode) as vibration amplitude
increases. Hence, in the present study, in order to overcome these two
problems, a newmethod referred as “iterative path following method”
is developed, which combines modal assurance criterion (MAC) and
arc-length continuation method with DIP in order to improve its
performance. In the iterative path following method (IPFM), by
utilizing MAC it is possible to track the correct natural frequency
and by using arc-length continuation it is possible to follow the
solution path in the presence of multiple solutions.

The modal assurance criterion is outlined as a scalar constant
relating the degree of consistency (linearity) between two vectors
as follows:

MAC ¼ fψAgT fψ xg
�� ��2

fψAgT fψAg
�� �� fψ xgT fψ xg

�� ��; ð30Þ
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where fψAg and fψ xg are two vectors that are compared with each
other. The modal assurance criterion takes values between 0 and 1,
where 0 and 1 indicate two independent and identical vectors,
respectively. Thus, if the modal vectors under study truly express a
consistent, linear relationship, the modal assurance criterion
approaches unity. This fact is utilized in finding the system
eigenvalues. Additionally, instead of increasing incrementally the
vibration amplitude, which may result in jump up or down in case
of multiple solutions, arc-length continuation is utilized to follow
the solution branch around turning points, in which the maximum
vibration amplitude becomes an unknown and arc-length is the
parameter used in path following.

The solution method consists of two major loops the arc-length
loop and direct iterative process loop which acts inside the arc-
length loop. The step by step description of the developed iterative
path following method (IPFM) is given as follows:

Step 1: The nonlinear equation of motion given in Eq. (29) can
be written as a residual vector function as

fðxn;ωÞ ¼ fðKn

LþKn

NLÞ�KDK
�1
B KSgUxn�ω2Mn Uxn ¼ 0; ð31Þ

xn ¼Wmax U 3
~Wi4

~Wi⋯N�2
~Wi 3

~Wo 4
~Wo⋯N�2

~Wo

�T

¼Wmax ~x
n;

(

ð32Þ
where k

~Wi and k
~Wo represent the normalized vibration

amplitudes of the mode shapes of inner and outer tubes with
respect to the grid point of the innertube or outertube that
result in the maximum absolute value. The arc length para-
meter is defined as the radius of a fictitious n-dimensional
sphere centered at the previous converged solution point. It
should be noted that in the first step, linear system eigenvector
is considered as the reference mode. The new solution will be
searched on the surface of this sphere rather than at the next
vibration amplitude, where the amplitude become an unknown
and the radius of the fictitious sphere is the parameter
specified. Details about applying the arc-length method to a
residual function can be found in [19]. Arc-length continuation
is used to update the mode shapes obtained in the previous
solution and predict the next vibration amplitude.
Step 2: DIP loop starts here, where calculated eigenvectors are
used to determine the nonlinear stiffness matrix, Kn

NL , and new
eigenvalues and eigenvectors are calculated from the updated
eigensystem. MAC is calculated based on the eigenvector of
previous solution in order to select the correct eigenvector and
the eigenvalue associated with it.
Step 3: The calculated eigenvector is normalized and step 2 is
repeated until the error in the residual function given by
Eq. (31) is within predefined tolerance limit.

It should be noted that the maximum vibration amplitude does
not occur at the same point on the CNTs; moreover, it can occur
at points other than DQM points. Hence, in order to find the
maximum vibration amplitude, after obtaining the nonlinear
eigenvector, the full mode shape is reconstructed using Lagrange
interpolation and the point of maximum amplitude is determined.

6. Results

In the following section, the effect of nonlinearities on the
first in-phase and out-of-phase fundamental natural frequencies
of a curved DWCNT is investigated. Firstly, the effect of geometric
nonlinearity and initial curvature on the nonlinear natural frequ-
ency of a DWCNT is studied by presenting the variation of normal-
ized nonlinear natural frequency with respect to the maximum

vibration amplitude. Later, the same study is repeated considering
the effect of vdW force nonlinearity together with
the geometric nonlinearity. Finally, considering both nonlinearities
medium stiffness on the nonlinear natural frequency of the
DWCNTs are investigated. Meanwhile, the effects of different end
conditions are as well considered in the studies performed.
In order to present the results in a proper form, the nonlinear
natural frequency is normalized with respect to the corresponding
linear natural frequency of the curved DWCNT and vibration
amplitudes are normalized with respect to

ffiffiffiffiffiffiffiffiffiffi
Ii=Ai

p
.

The numerical values of the parameters used in this study are
given in Table 1. Before proceeding into the nonlinear analysis, the
effect of number of grid points is studied on the linear system,
where it is observed that the natural frequencies obtained for all
types of boundary conditions considered are identical in case the
number of grid points is larger or equal to 13. Therefore, in all the
results presented, 18 grid points are utilized which is observed to
be sufficient for the nonlinear cases as well. These results are not
presented here for brevity.

In Table 2, the fundamental natural frequency of the linear
DWCNT with H–H end conditions are compared with the analy-
tical solution and the results given in literature. It can be seen that
the results of DQM and analytical solution are in very good
agreement.

6.1. Effect of geometric nonlinearity and initial curvature

In Fig. 2, the variation of the normalized nonlinear natural
frequency of the first in-phase vibration mode of a DWCNT is
given for hinged–hinged, clamped–hinged, and clamped–clamped
boundary conditions with different values of initial curvature
(waviness) in the presence of only geometric nonlinearity. A hard-
ening stiffness behavior is observed for all types of boundary
conditions, i.e. the nonlinear natural frequency increases as the
vibration amplitude increases. Furthermore, it is observed that
although the clamped–clamped DWCNT have the highest funda-
mental linear natural frequencies, it has the lowest normalized
nonlinear natural frequency at the same maximum vibration
amplitude. This is an expected result, since the effect of geometric
nonlinearity decreases due to the limited deformation obtained for
stronger end supports. Furthermore, it is observed that, for all the
cases, normalized nonlinear natural frequency decreases as wavi-
ness increases and tends to approach to the linear one. Moreover,
it can be seen that as the end conditions get stronger, the effect of

Table 1
Numerical values of tubes parameters.

Parameter Value

Innertube diameter di ¼ 0:7 nm
Outertube diameter d0 ¼ 1:4 nm
Young's modulus E¼ 1 TPa
Poisson's ratio ν¼ 0:25
Thickness of each tube t ¼ 0:34 nm

Table 2
Fundamental Linear Natural Frequencies of a Simply Supported DWCNT.

Natural frequencies In-phase Out-of-phase

Ref. [19] 0.4673 7.8852
Ref. [17] 0.46 7.71
Analytical solution 0.467289 7.885189
Present study, DQM 0.467289 7.885189

E. Cigeroglu, H. Samandari / Physica E 64 (2014) 95–105 99



initial curvature on the variation of nonlinear natural frequency
decreases.

Fig. 3 shows the variation of the normalized nonlinear natural
frequency of a DWCNT vibrating in the first out-of-phase vibration
mode where the effect of different boundary conditions is inves-
tigated. It should be noted that the effect of initial curvature is
insignificant for the case of out-of-phase vibration mode; hence,
for brevity, those results are not presented here. Furthermore, for
clarity, initial curvature is considered to be equal to zero in the

cases of out-of-phase vibration modes presented in this study.
Results show that in contrast to in-phase vibration mode, the
variation of nonlinear natural frequency increases as end condi-
tions get stronger for the out-of-phase vibration mode. However,
the amount of the increase in the nonlinear natural frequency is
lower than the case of in-phase vibration mode and for H–H and
C–C boundary conditions, it is negligible. Moreover, several turn-
ing points are observed for C–H end conditions, where at a single
vibration amplitude multiple nonlinear natural frequencies exist.

Fig. 2. Variation of normalized nonlinear natural frequency of inner and outer tubes vibrating in the first in-phase mode for different end conditions and initial curvature.

Fig. 3. Variation of normalized nonlinear natural frequency of inner and outer tubes vibrating in the first out-of-phase mode for different end conditions (e¼ 0)

Fig. 4. Variation of normalized nonlinear natural frequency of outertube vibrating in the first out-of-phase mode and the corresponding mode shapes in the middle of each
region.
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In Fig. 4, the variation of nonlinear natural frequency for the C–H
end conditions is re-plotted by dividing the plot into five regions
where the corresponding mode shapes of the tubes at the center
of each region is given as well. The regions are defined by
considering the changes in the characteristics of the nonlinear
mode shape, where, for some cases, it occurs around turning
points. It can be seen that in the first region, the system vibrates in
a mode shape similar to the fundamental out-of-phase mode
shape of the linear system. However as the region number
increases, the contribution of other linear modes become signifi-
cant in the nonlinear solution. For instance, in the second region
the system vibrates in a mode shape which can be identified as a

combination of the first out-of-phase and the fourth in-phase
linear vibration modes. In order to clearly study the contribution
of each linear vibration mode to the nonlinear solution, variation
of normalized modal contributions along the solution curve is
plotted in Fig. 5 for the first six modes that have the highest
contributions. Normalized modal contributions are calculated
using Eq. (30), where the nonlinear mode shape is compared with
the linear modes of corresponding system. It can be seen that
moving forward along the solution curve the contribution of the
first out-of- phase mode decreases and at the same time the
contribution of the forth in-phase mode increases and becomes
maximum in the middle of the third region. Proceeding further,
contribution of the fourth in-phase mode decreases; whereas, the
contribution of the second out-of-phase mode starts to increase
and dominates the nonlinear solution. Our further studies show
that system continues to vibrate in the second out-of-phase mode
and does not return to the first out-of-phase vibration mode as
vibration amplitude increases. This is due to the fact that, in the
path following method, the nonlinear vibration mode which is
closer to the one at the previous amplitude step is followed;
however, for H–H and C–C boundary conditions, which are
symmetric, the first out-of-phase vibration mode is dominant in
the nonlinear vibration mode.

6.2. Van der Waals force nonlinearity together with geometric
nonlinearity

The variation of normalized nonlinear natural frequency in the
first in-phase vibration mode is studied in the presence of bothFig. 5. Variation of normalized modal contributions vs. normalized total arc-length.

Fig. 6. Variation of normalized nonlinear natural frequency of DWCNT vibrating in the first out-of-phase mode (a) Comparison of all end conditions in the presence of both
vdW force and geometric nonlinearities, (b) H–H, (c) C–H, and (d) C–C.
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geometric and vdW force nonlinearities for different types of end
conditions and initial curvature. It is observed that in the in-phase
vibration mode, nonlinear natural frequency majorly changes due
to geometric nonlinearity and considering the vdW force non-
linearity in addition to geometric nonlinearity does not affect the
vibratory behavior of the DWCNT; hence, results very similar to

the ones given in Fig. 2 is obtained. Therefore, for brevity these
results are not presented here. This is an expected result, since
vdW force nonlinearity depends on the relative motion between
the inner and outer tubes and in the in-phase vibration modes,
relative motion between the tubes changes slightly during free
vibration.

Fig. 7. Variation of normalized modal contributions vs. total arc-length (a) H–H, (b) C–H, and (c) C–C.

Fig. 8. Normalized modal contribution of innertube and the mode shapes of inner and outer tubes at the end of each region for H–H DWCNT.
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Fig. 6a shows the variation of the normalized nonlinear natural
frequency for the case of the first out-of-phase vibration mode
considering different types of end conditions. Results show that
due to the vdW force nonlinearity, nonlinear natural frequency
changes considerably where several turning points are observed
for all end conditions considered. The results obtained for the H–H
DWCNT are the same as the ones presented by Cigeroglu and
Samandari [19], where authors used a Galerkin based discretiza-
tion method. In Fig. 6c, b, and d, variation of the normalized
nonlinear natural frequency for each end condition is given, where
the curves are divided into seven different regions indicated by
different markers and colors. In Fig. 7, variation of the normalized
contribution of each linear mode shape is plotted for the first
seven modes that have the highest contributions, where different
regions are indicated by numbers. It can be seen that for all the
cases as total arc-length increases, or as the region number
increases, the contribution of the first linear out-of-phase mode
decreases and later increases again. Moreover, it is observed that
for all the cases in the region for which the contribution of the first
mode becomes a minimum (2nd region for C–C and C–H, and 2nd–
4th regions for H–H), CNTs vibrate as if it is vibrating in the fifth
linear in-phase mode.

Fig. 8 shows a bar plot of normalized modal contributions of
the system for H–H DWCNT at the end of each region, shown in
Fig. 6, in addition to the corresponding nonlinear mode shapes of
the inner and outer tubes. It can be seen that at the end of the first
region CNTs vibrate in a nonlinear mode shape completely
different from the first linear out-of-phase mode shape where
the contribution of the fifth in-phase mode passes the contribu-
tion of the first out-of-phase mode. It can be seen that at the end
of the 2nd region, the contribution of the fifth in-phase mode
reaches to its maximum, which starts to decrease and become zero

at the end of the sixth region. It is worth noting that for the case of
H–H DWCNT only the odd mode shapes are excited which verifies
the results given in [19].

In Fig. 9, normalized modal contribution of C–H DWCNT is
given around the middle of each region in addition to the corres-
ponding nonlinear mode shapes of the inner and outer tubes. It is
observed that for the case of C–H DWCNT, in addition to odd
modes, even modes are also excited. Moreover, it can be seen that
asymmetric boundaries resulted in asymmetric mode shapes.
Fig. 10 shows a similar plot for C–C DWCNT. It is observed that,
for the present case, only the odd modes are excited. Therefore, it
can be concluded that for symmetric boundary conditions only the
odd mode shapes are present in the nonlinear modes whereas for

Fig. 9. Normalized modal contributions of innertube and the mode shapes of inner and outer tubes around the middle of each region for C–H DWCNT.

Fig. 10. Normalized modal contributions of innertube and the mode shapes of inner and outer tubes around the middle of each region for C–C DWCNT.

Fig. 11. Comparison with available data in the literature for a H–H DWCNT.
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asymmetrical end conditions in addition to the odd modes, even
modes as well contribute to the nonlinear mode shapes.

Fig. 11 represents a comparison between the results of current
study and available results in the literature. It is observed that the
solutions obtained in the present study by utilizing DQM and the
results given in literature by using multiple trail function and
Galerkin method [19] are in good agreement. For the case of H–H
DWCNT, the results at selected points obtained by the present
study (DQM) and by Galerkin method [19] are tabulated in Table 3.
It observed that both results are in good agreement and slight
differences between the values are due to the nature of the two
different methods compared.

6.3. Effect of medium stiffness

Fig. 12 presents the effect of the medium stiffness, k, on the
variation of normalized nonlinear natural frequency versus max-
imum vibration amplitude for H–H, C–H, and C–C DWCNT. It is
observed that with an increase in the medium stiffness, k, the
normalized nonlinear frequency tends to approach to the linear
one for all end conditions. It is seen that for H–H end condition
with medium stiffness less than 108 N/m2, variation of normalized

nonlinear natural frequency changes slightly; whereas, for med-
ium stiffness larger than 108 N/m2 significant changes in the
normalized nonlinear natural frequency are observed. A similar
behavior is observed formerly for variation of linear natural
frequencies. This shows that the effect of geometric nonlinearity
becomes negligible in the presence of sufficiently large medium
stiffness. Moreover, it is observed that as boundary conditions get
stiffer in addition to decreasing in variation of nonlinear natural
frequency, the threshold value of medium stiffness increases. The
results are tabulated in Table 4. A similar behavior is detected for
the case of out-of-phase vibration modes therefore for brevity it is
not presented here. The results for the case of H–H DWCT
vibrating in the first out of phase vibration mode can be found
in [19].

7. Conclusion

In this paper, nonlinear free vibration of a curved DWCNT
embedded in elastic medium is studied by using differential
quadrature method (DQM) where in addition to geometric non-
linearity, interlayer vdW force nonlinearity is also included. The
effect of nonlinearities, end conditions, initial curvature, stiffness

Fig. 12. Effect of medium stiffness on the nonlinear fundamental natural frequency of DWCNT vibrating in the first in-phase vibration mode (a) hinged–hinged, (b) clamped–
hinged, and (c) clamped–clamped (e¼ 0)

Table 4
Normalized nonlinear natural frequencies at selected normalized vibration amplitudes of outertube.

Normalized vibration amplitude of outertube Normalized nonlinear natural frequency

H–H C–H C–C
Medium stiffness Medium stiffness Medium stiffness

0 108 109 1010 0 108 109 1010 0 108 109 1010

0.8 1.0234 1.0216 1.0126 1.0025 1.0162 1.0156 1.0119 1.0039 1.0060 1.0059 1.0052 1.0025
1.5 1.0799 1.0736 1.0434 1.0089 1.0473 1.0457 1.0351 1.0115 1.0208 1.0204 1.0178 1.0091
2.3 1.1793 1.1658 1.0992 1.0206 1.1019 1.0985 1.0759 1.0251 1.0480 1.0472 1.0412 1.0203

Table 3
DQM and Galerkin results at selected points for a H–H DWCNT.

Normalized maximum vibration amplitude 0.03 0.06 0.09 0.12

Normalized nonlinear natural frequency (present study, DQM) 1.0700 1.2022, 1.2314, 1.2355 1.2496, 1.2682, 1.2891 1.2583, 1.2682, 1.3011, 1.3242, 1.6890
Normalized nonlinear natural frequency (Galerkin) [19] 1.0700 1.1995, 1.2258, 1.2317 1.2460, 1.2652, 1.2875 1.2568, 1.2659, 1.2989, 1.3235, 1.6885
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of the surrounding elastic medium, and vibrational modes on the
nonlinear free vibration of DWCNTs is studied in detail.

Results show that nonlinear natural frequency increases as
vibration amplitude increases in the presence of only geometric
nonlinearity for all the type of end conditions. Moreover, it is
observed that multiple solution at same vibration amplitude can
exist due to interaction of nonlinear in-phase and out-of-phase
vibration modes.

Furthermore, application of DQM made it possible for the first
time to study the effect of different boundary conditions in the
presence of vdW force nonlinearity on the variation of the non-
linear natural frequencies of DWCNTs. Results show that due to the
vdW force nonlinearity, nonlinear natural frequency changes
considerably where several turning points are as well observed.
It is been observed that the number of turning points is different
for each boundary condition considered. Moreover, it is observed
that for symmetric boundary conditions only the odd mode shapes
are present in the nonlinear modes whereas for asymmetrical end
conditions in addition to the odd modes, even modes as well
contribute to the nonlinear mode shapes.
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Appendix A.

The initial waviness matrix given in Eq. (19) is defined as
follows:

E¼ ∑
N

n ¼ 1
dn ϕ0ðxnÞ ∑

N

s ¼ 1
cð1Þn;ssWo g

� �� ��

�

ϕ″ðx3Þ 0
ϕ″ðx4Þ

⋱
0 ϕ″ðxN�2Þ

2
66664

3
77775; ðA1Þ

where ϕ0ðxÞ and ϕ″ðxÞ are first and second derivatives of the
first linear eigenfunction of the system that is used to define the
waviness, respectively.

and βr(r¼ i; o), K1, and K2 given in Eqs. (20) and (21) are
defined as follows:

βr ¼
1
2

∑
N

n ¼ 1
dn ∑

N

s ¼ 1
cð1Þn;ssWr g
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;
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